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1. Objective 

The goal of this white paper is to present the theory and methodology for 

composites non-destructive elastic moduli determination using the Impulse Excitation 

Technique. It presents a review of the literature and the advances made by ATCP 

Engenharia Física in the application of this technique, already standardized for isotropic 

materials [1], for the characterization of composite materials. 

2. Introduction 

The definition of composite materials varies according to author, depending on the 

aspects and considerations that are taken into account. According to Chawla [2], for a 

material to be classified as a composite, it should comply with some conditions. First, it 

must be manufactured, meaning that it must be projected and produced by man; in 

addition, it must consist of an adequate combination of distinct physical and/or chemical 

phases; lastly, its characteristics are not achieved by any of the isolated components.  

Intrinsic composite materials comprise at least two components: the matrix, which 

can be ceramic, metallic or polymeric; and the reinforcement, which may be in fiber or 

particle form. Structural composites, on the other hand, may be laminates or sandwich 

panels (Figure 1). 

 

Figure 1 - Classification of composite materials [3]. 

The advent of composites with higher technological level began in the 1960s 

because of a demand for materials that present high resistance allied to low density. The 
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main areas of application included the civil construction sector, the aerospace and the 

power industry [2,4]. Currently, composites are used in several industries, being 

employed to manufacture a wide range of products from simple artifacts to cars [5] and 

high-performance vessels (Figure 2).  

 

Figure 2 - Pressure vessels for natural gas manufactured by 3M with composite materials. 

The elastic properties characterization of composites is crucial for correct materials 

selection, numerical simulations and reliable structural calculations. One of the non-

destructive techniques used to evaluate the elastic moduli and has been growing within 

this sector is the Impulse Excitation Technique, which is the focus of this work. Figure 3 

shows CFRP and UHMWPE specimens prepared for elastic modulus determination by 

the Impulse Excitation Technique. 

 

Figure 3 - Specimens of an ultra-high molecular weight polyethylene (UHMWPE) for ballistic armor and 

of an aeronautical monolithic panel made of carbon fiber reinforced plastic (CFRP). They are prepared 

for elastic moduli non-destructive characterization by Impulse Excitation Technique with Sonelastic® 

Systems [6]. 

http://www.atcp.com.br/pt/produtos/caracterizacao-materiais/sonelastic/aplicacoes-sonelastic/compositos-madeiras.html
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3. Composites elastic moduli determination using the Impulse 

Excitation Technique 

3.1. Technique foundations 

The Impulse Excitation Technique (ASTM E1876 [1]) consists in determining the 

elastic moduli of a material based on the natural frequency of a regular geometry 

specimen (bar, cylinder, disc or ring). These frequencies are excited by a short mechanical 

impulse, followed by the acquisition of the acoustic response using an acoustic sensor. 

After that, a mathematical processing is performed to the acoustic signal in order to obtain 

the frequency spectrum. Based on this, the dynamic elastic moduli are calculated using 

equations provided by the ASTM standard, which considers the geometry, mass, 

specimen dimensions and frequencies obtained [1].  

For the aimed vibration mode excitation, it is necessary to impose specific boundary 

conditions. Figure 4 presents a specimen support with automatic impulse device and 

acoustic sensor positioned to measure the Young’s modulus of a rectangular bar in 

flexural vibration mode.  

 

 

Figure 4 - a) Basic set up for the characterization of a bar in flexural vibration mode using the Impulse 

Excitation Technique [7] and b) SA-BC: Adjustable support for bars and cylinders. 

  

a) 

http://www.atcp.com.br/pt/produtos/caracterizacao-materiais/sonelastic/aplicacoes-sonelastic/compositos-madeiras.html
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3.2. Vibration modes 

A specimen may vibrate in different ways and for each mode there is a specific 

fundamental frequency. Figure 5 presents the main fundamental vibration modes [8]. 

 

Figure 5 - Fundamental vibration modes: a) flexural, b) torsional, c) longitudinal and d) planar. Blue 

areas represent the regions of minimum amplitude of vibration, whilst the red areas represent the regions 

of maximum amplitude of vibration. 

The boundary conditions determine the mode of vibration. The natural frequencies 

for these modes depend on the geometry, mass, dimensions and elastic moduli.  

Figures 6 a-c [1] shows the optimum boundary conditions for the main vibration 

modes of a rectangular bar, whilst Figure 6d shows the same for a disc. Based on the 

specimen resonance frequencies and by employing the ASTM E1876 [1] equations, it is 

calculated the corresponding dynamic elastic moduli.  

 

  

http://www.atcp.com.br/pt/produtos/caracterizacao-materiais/sonelastic/aplicacoes-sonelastic/compositos-madeiras.html
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a) 
 
 

Flexural 
vibration 

mode 

 

b) 
 
 

Torsional 
vibration 

mode 

 
c) 
 
 
Longitudinal 

vibration 
mode 

 
d) 
 
 

Planar 
vibration 

mode 

 

Figure 6 – Boundary conditions for (a) flexural, (b) torsional, (c) longitudinal and (d) planar modes.  
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3.3. Elastic moduli of composites 

The majority of composites present a certain degree of anisotropy, which means 

their properties depend on direction. Therefore, when they are characterized using the 

Impulse Excitation Technique, it is important to know the specimen’s symmetry and 

orientation. 

Appendix A describes the elasticity theory applied to composite materials based on 

general micro and macromechanical approaches. The appendix describes the three main 

material types regarding the symmetry and how the elastic constants should be dealt with 

in each case. 

Figure 7 illustrates a non-isotropic generic structure, in which, for the 

characterization of the main elastic modulus (𝐸1, 𝐸2, 𝐸3) it is necessary three specimens 

in different orientations (specimens in directions 1, 2 and 3). 

 

Figure 7 - Diagram of a generic structure, detailing how to obtain specimens in the three main directions. 

Table 1 specifies the elastic moduli that can be characterized using the Impulse 

Excitation Technique and their relative directions based on an orthotropic specimen 

(Figure 7). The terms used [9] are defined as: 

𝐸1 – Young’s modulus in direction 1; 

𝐸2 – Young’s modulus in direction 2; 

𝐸3 – Young’s modulus in direction 3; 

𝐺𝑒𝑓𝑓 – Shear modulus characterized by the Sonelastic equipment. This modulus consists 

of combining the 𝐺𝑖𝑗 moduli shown in parentheses [14]; 

𝐺13 – Shear modulus associated with strains on plan 13; 

𝐺23 – Shear modulus associated with strains on plan 23; 

G12 – Shear modulus associated with strains on plan 12. 

 

 

http://www.atcp.com.br/pt/produtos/caracterizacao-materiais/sonelastic/aplicacoes-sonelastic/compositos-madeiras.html
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Table 1 - Elastic moduli characterized by Impulse Excitation Technique in accordance to the specimen 

orientation and the vibration mode applied. 

Vibration Mode 

Longitudinal Flexural Torsional 

Specimen 

orientation 

1 𝐸1
𝑙𝑜𝑛𝑔

 𝐸1
𝑓𝑙𝑒𝑥

 𝐺𝑒𝑓𝑓(𝐺12, 𝐺13) 

2 𝐸2
𝑙𝑜𝑛𝑔

 𝐸2
𝑓𝑙𝑒𝑥

 𝐺𝑒𝑓𝑓(𝐺12, 𝐺23) 

3 𝐸3
𝑙𝑜𝑛𝑔

 𝐸3
𝑓𝑙𝑒𝑥

 𝐺𝑒𝑓𝑓(𝐺13, 𝐺23) 

 

3.3.1. Young’s modulus 

• Longitudinal vibration mode 

When the specimen is loaded in longitudinal mode (check the boundary conditions 

in Figure 6c), the elastic modulus obtained will refer to the orientation of the specimen’s 

length. Therefore, the orientation of the specimen will determine which modulus is being 

measured (𝐸1,  𝐸2,  𝐸3 or a combination of these directions), as it is presented in Table 1. 

• Flexural vibration mode 

When a material is flexed, there is both tension and compression, as pictured in 

Figure 8 [10]. For homogeneous and isotropic materials, the elastic modulus obtained 

from a bending test coincides with the elastic modulus measured in an axial test 

(longitudinal direction). Therefore, the value of a dynamic elastic modulus obtained using 

flexural vibration is the same as the one obtained using the longitudinal vibration mode 

[10]. Nevertheless, it is known that when flexed, the surface is the region that it is 

submitted to the greatest values of stress. For this reason, if a specimen presents the 

stiffness of the surface different from the center (for example, if there is a stiffness 

gradient along the thickness); or if the specimen presents small flaws such as pores, cracks 

and micro-cracks on the surface, there will be a difference between the values obtained 

using flexural and longitudinal modes. In the literature, there is a range of publications 

focused on the wood evaluation, presenting the difference between values obtained from 

distinct vibration modes [8,11-13]. 

http://www.atcp.com.br/pt/produtos/caracterizacao-materiais/sonelastic/aplicacoes-sonelastic/compositos-madeiras.html
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Figure 8 – Regions of tension (red) and compression (blue) stress during a bending test. 

 

3.3.2. Shear modulus 

• Torsional vibration mode 

When a material is subjected to a torsion test, two values of shear modulus act 

concomitantly on transversely isotropic and orthotropic materials. If there is a torsion 

such as described in Figure 5b, the shear modulus obtained will be associated with the 

surfaces that are being sheared (the four lateral surfaces of the specimen). Therefore, the 

shear modulus calculated using fundamental torsional vibration frequency correspond to 

an effective modulus. Thus, the results obtained by Sonelastic will be a combination of 

the active shear moduli (Table 1 indicates the active shear moduli that comprise the 

effective value for each orientation) [14]. 

 

3.3.3. Poisson’s ratio 

The characterization of the Poisson’s ratio using Impulse Excitation Technique 

occurs indirectly. It is obtained by correlating the Young’s modulus and the shear 

modulus of a material or by the reciprocal Poisson’s ratio equation. The equations come 

from the Elasticity Theory and are directly related to the stiffness matrices involving the 

symmetry present on the specimen. They are shown below: 

• Isotropic material: 

𝜈 =
𝐸

2 𝐺
− 1  

• Transversely isotropic material: 

𝜈23 =
𝐸2 

2 𝐺23
− 1 

• Orthotropic material: 

𝜈12

𝐸1
=

𝜈21

𝐸2
 ,     

𝜈13

𝐸1
=

𝜈31

𝐸3
 ,     

𝜈23

𝐸2
=

𝜈32

𝐸3
 

http://www.atcp.com.br/pt/produtos/caracterizacao-materiais/sonelastic/aplicacoes-sonelastic/compositos-madeiras.html
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Where: E is the Young’s modulus, G the shear modulus and v the Poisson’s ratio of an 

isotropic material.  

Appendix B presents the source of these equations and more details explaining how 

to perform the characterization of Poisson’s ratio using the Impulse Excitation Technique. 

 

4. Material symmetry and the elastic moduli obtained using 

Sonelastic® 

As previously mentioned, composite materials may present different types of 

symmetry regarding their mechanical properties. Thus, it is necessary to know the 

symmetry, the aimed elastic moduli and the orientations. Table 2 shows a summary of the 

information presented up to this point, including details of the elastic moduli measurable 

by Sonelastic®. 

Table 2 – Elastic moduli considering the specimen’s symmetry and orientation. In addition, it is 

described the elastic moduli possible to be determined by the Impulse Excitation Technique (IET). 

Material type Elastic moduli Specimen orientation 

Elastic moduli 

determined by IET 

using Sonelastic 

Isotropic E, G, ν - 
 

E, G, ν 

Transversely 
Isotropic 

E1, E2 = E3, 

G12 = G13, G23, 

ν12 = ν13, ν23 

1 
 

E1, G12 = G13 

2 ou 3 
 

E2, Geff (G12, G23) 

Orthotropic 

E1, E2, E3, 
G12, G13, G23, 

ν12, ν21, 
ν13, ν31, 
ν23, ν32 

1 
 

E1, Geff (G12, G13) 

2 
 

E2, Geff (G12, G23) 

3 
 

E3, Geff (G13, G23) 

 

To determine the measurable elastic properties using the Impulse Excitation 

Technique it is necessary to prepare specimens with different orientations adequate to the 

material symmetry. It is important to highlight that it is also possible to measure 

specimens containing fibers in intermediate angles (between 0º and 90º). 

 

http://www.atcp.com.br/pt/produtos/caracterizacao-materiais/sonelastic/aplicacoes-sonelastic/compositos-madeiras.html
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5. Final Considerations 

The elastic moduli of composite, materials formed by the combination of two or 

more materials of different nature, may be non-destructively measured by Impulse 

Excitation Technique using Sonelastic Systems. For that, it is necessary to know the 

material symmetry in order to prepare specimens according to the material's directions 

and to apply the appropriate boundary conditions. 
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Appendix A – Elasticity Theory applied to composite materials 

1. Introduction 

Based on a tensile test of an isotropic material (annealed metal, for example), at the 

elastic regime it is possible to correlate stress and strain as described in Equation 1 

(Hooke’s Law) [16]:  

𝜎 = 𝐸 . 𝜀                                                             (1) 

Figure 9 shows a typical stress-strain curve of a quasi-static tensile test from which 

the main mechanical properties is obtained [16]. The Young’s modulus, E, is the slope of 

the curve when the body is under the elastic regime (beginning of the curve).  

 

Figure 9 - Stress-strain curve of a high resistance steel [17]. 

It is usual to assume that composite materials present linear elastic behavior; 

however, in the majority of cases it is not possible to consider that these materials are 

isotropic [2]. For this reason, Equation 1 must incorporate indexes regarding the different 

directions, being the Cartesians coordinates the most common. Figure 10 shows an 

infinitesimal volume and possible stresses during loading a 1-2-3 orthogonal system. 

http://www.atcp.com.br/pt/produtos/caracterizacao-materiais/sonelastic/aplicacoes-sonelastic/compositos-madeiras.html
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Figure 10 - Stress in an infinitesimal volume within a 1-2-3 orthogonal system. 

In the presented volume, tensile stress is represented by σ and shear stress is 

represented by τ. Provided that there is a balance of forces within this volume, the shear 

stresses that are applied to the same edge of the cube should be the same (for example 

𝜏12 = 𝜏21). Based on these considerations, it is possible to describe the elastic behavior 

of an anisotropic material as: 

𝜎𝑖𝑗 = 𝐶𝑖𝑗𝑘𝑙 . 𝜀𝑘𝑙,    𝑖𝑛 𝑤ℎ𝑖𝑐ℎ  𝑖, 𝑗, 𝑘, 𝑙 =  1, 2, 3                     (2) 

Considering the stress and the strain as square matrices of third order, it is possible 

to conclude that Cijkl is a fourth-order tensor, known as stiffness tensor [2]. Based on the 

symmetry relationship described on Equation 3, it is possible to lower the number of 

elastic constants from 81 to 21. 

𝐶𝑖𝑗𝑘𝑙 = 𝐶𝑗𝑖𝑘𝑙 ,   𝐶𝑖𝑗𝑘𝑙 = 𝐶𝑖𝑗𝑙𝑘 ,   𝐶𝑖𝑗𝑘𝑙 = 𝐶𝑘𝑙𝑖𝑗                  (3) 

A reduced index notation is used to simplify the correlation between stress, strain 

and elastic constants, as shown in Table 3. 

 

Table 3 – A four-index notation reduced to a two-index notation [18]. 

Four-index notation 11 22 33 23 31 12 

Two-index notation 1 2 3 4 5 6 

 

Based on all previous considerations, the stiffness matrix of an anisotropic material 

presenting linear-elastic behavior is symmetric and may be described as follows: 

http://www.atcp.com.br/pt/produtos/caracterizacao-materiais/sonelastic/aplicacoes-sonelastic/compositos-madeiras.html
http://www.sonelastic.com/


Determination of composites elastic moduli using the 

Impulse Excitation Technique 

ITC-06 / ATCP 

 

 

www.sonelastic.com    14 
 

[
 
 
 
 
 
𝜎1

𝜎2

𝜎3

𝜏4

𝜏5

𝜏6]
 
 
 
 
 

=

[
 
 
 
 
 
 
𝐶11 𝐶12 𝐶13 𝐶14 𝐶15 𝐶16

𝐶22 𝐶23 𝐶24 𝐶25 𝐶26

𝐶33 𝐶34 𝐶35 𝐶36

𝐶44 𝐶45 𝐶46

𝐶55 𝐶56

𝐶66]
 
 
 
 
 
 

.

[
 
 
 
 
 
𝜀1

𝜀2

𝜀3

𝛾4

𝛾5

𝛾6]
 
 
 
 
 

                             (4) 

Another form to represent the stress-strain relation of a material is by using the 

compliance matrix, as shown below: 

[
 
 
 
 
 
𝜀1

𝜀2

𝜀3

𝛾4

𝛾5

𝛾6]
 
 
 
 
 

=

[
 
 
 
 
 
 
𝑆11 𝑆12 𝑆13 𝑆14 𝑆15 𝑆16

𝑆22 𝑆23 𝑆24 𝑆25 𝑆26

𝑆33 𝑆34 𝑆35 𝑆36

𝑆44 𝑆45 𝑆46

𝑆55 𝑆56

𝑆66]
 
 
 
 
 
 

.

[
 
 
 
 
 
𝜎1

𝜎2

𝜎3

𝜏4

𝜏5

𝜏6]
 
 
 
 
 

                              (5) 

i.e., 

[𝑆] =  [𝐶]−1                                                         (6) 

It is possible to note that this model represents the elastic properties of a specific 

point within an object, meaning that the described constants may vary from point to point 

if the material is not homogeneous. Therefore, to simplify the model, despite the fact that 

composite materials are heterogeneous (i.e. multiphase), they are commonly considered 

homogeneous.  

To be able to describe completely a material in what regards the elastic properties, 

it is necessary to find its 21 elastic constants. However, for the majority of the materials, 

this number is reduced because of different types of symmetry. 

 

2. Stiffness matrix for different material types 

2.1. Orthotropic material 

An orthotropic material presents three mutually perpendicular planes of symmetry, 

in which each direction has different properties. Laminated composites formed by 

continuous unidirectional fibers arranged in a rectangular array and wooden bars can be 

classified as orthotropic materials. In this case, it is possible to verify that nine elastic 

constants are enough to characterize the material and the stiffness matrix will be as 

presented below [10]: 

http://www.atcp.com.br/pt/produtos/caracterizacao-materiais/sonelastic/aplicacoes-sonelastic/compositos-madeiras.html
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[𝐶] =

[
 
 
 
 
 
𝐶11 𝐶12 𝐶13 0 0 0
𝐶12 𝐶22 𝐶23 0 0 0
𝐶13 𝐶23 𝐶33 0 0 0
0 0 0 𝐶44 0 0
0 0 0 0 𝐶55 0
0 0 0 0 0 𝐶66]

 
 
 
 
 

                               (7) 

 

2.2. Transversely isotropic material 

Transversely isotropic materials are orthotropic materials that present isotropy in 

one of its planes of symmetry. Laminated composites that are formed by continuous 

unidirectional fibers organized in square or hexagonal array can be mentioned as 

examples of transversely isotropic materials. In this case, the stiffness matrix consists of 

five independent constants and has the following form [10]: 

[𝐶] =

[
 
 
 
 
 
 
𝐶11 𝐶12 𝐶12 0 0 0
𝐶12 𝐶22 𝐶23 0 0 0
𝐶12 𝐶23 𝐶22 0 0 0

0 0 0
𝐶22− 𝐶23

2
0 0

0 0 0 0 𝐶66 0
0 0 0 0 0 𝐶66]

 
 
 
 
 
 

                             (8) 

 

2.3. Isotropic material 

Isotropic materials have the characteristic to provide the same response regardless 

the direction in which the measurement is performed. Composites that use particulate 

material as reinforcement (for example glass spheres) and random short fibers within its 

tridimensional volume may be described by this model. In this case, the stiffness matrix 

will present only two independent variables and has the following form [10]: 

[𝐶] =

[
 
 
 
 
 
 
 
𝐶11 𝐶12 𝐶12 0 0 0
𝐶12 𝐶11 𝐶12 0 0 0
𝐶12 𝐶12 𝐶11 0 0 0

0 0 0
𝐶11− 𝐶12

2
0 0

0 0 0 0
𝐶11− 𝐶12

2
0

0 0 0 0 0
𝐶11− 𝐶12

2 ]
 
 
 
 
 
 
 

                     (9) 
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3. Micromechanical analysis 

The micromechanical approach applied to composites consists of studying the 

incorporation of an amount of fibers (reinforcements) to a matrix. From the interaction 

and the combination between these components, it is possible to predict the elastic 

constants of the resultant material. The analysis is focused on how the fiber interacts with 

the matrix and how the stress is transferred to the reinforcement after the application of a 

specific stress to the composite. Tables 4 and 5 presents, respectively, some properties of 

materials that are commonly used to manufacture composites.  

Table 4 – Young’s modulus and density values for the main types of fibers used to manufacture 

composites [15]. 

Material Type / commercial name 
Young’s modulus – E 

(GPa) 

Density 

(g/cm³) 

Glass fiber E type 72 2.54 

Glass fiber S type 86 2.49 

Carbon fiber (PAN) IM-7 (Hercules) 276 1.77 

Carbon fiber (PAN) T-650/42 (Amoco) 290 1.77 

Carbon fiber  (tar) P-55 (Amoco) 379 1.99 

Aramid fiber Kevlar® 29 (Dupont) 62 1.44 

Aramid fiber Kevlar® 49 (Dupont) 131 1.47 

Boron fiber D = 0.004” (Textron) 400 2.57 

 
Table 5 – The values for Young’s modulus and density of the main types of polymeric, metallic and 

ceramic matrices [2].  

Material 
Young’s modulus – E 

(GPa) 

Density 

(g/cm³) 

Epoxy 2.5 – 4.0 1.2 – 1.3 

Polyester 2.0 – 4.0 1.1 – 1.4 

Aluminum 70 2.7 

Titanium alloy Ti-6Al-4V 110 4.5 

Silicon Carbide 400 – 440 3.2 

Aluminum oxide 360 – 400 3.9 – 4.0 
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3.1. Rule of mixtures 

The rule of mixtures consists of a simplified analysis for the Young’s modulus 

prediction of a composite formed by unidirectional fibers [2]. By applying a longitudinal 

load to a composite (Figure 11a), it is possible to consider that the strains in both matrix 

and reinforcement will be the same (𝜀𝑐 = 𝜀𝑓 = 𝜀𝑚). In that case, the load applied will be 

the sum of the loads on the matrix and on the fibers (𝑃𝑐 = 𝑃𝑓 + 𝑃𝑚).  

𝐸𝑐𝑙 = 𝐸𝑓 𝛷𝑓 + 𝐸𝑚 𝛷𝑚                                              (10) 

where 𝐸𝑐𝑙 is the longitudinal Young’s modulus; 𝐸𝑓, the fiber modulus; 𝐸𝑚, the matrix 

modulus; 𝛷𝑓, the fiber volumetric fraction present in the composite; and 𝛷𝑚, the matrix 

volumetric fraction in the composite (𝛷𝑚 = 1 − 𝛷𝑓). 

 

Figure 11 - Representation of a composite formed by unidirectional continuous fibers: (a) application of 

the load in the direction of fibers and (b) transversely to the fibers [2]. 

When applying a load at the transversal direction of the composite (Figure 11b), it 

is possible to consider that the load applied to the matrix and to the reinforcement are the 

same (𝑃𝑐 = 𝑃𝑓 = 𝑃𝑚). In that case, the strain applied to the composite will be the sum of 

the strains applied to both matrix and fibers (𝜀𝑐 = 𝜀𝑓 + 𝜀𝑚). Thus, it is possible to come 

to the following equation: 

1

𝐸𝑐𝑡
=

𝛷𝑓

𝐸𝑓
+

𝛷𝑚

𝐸𝑚
                                                     (11) 

𝐸𝑐𝑡 is the transverse Young’s modulus. 

Equations 10 and 11 express the application of the rule of mixtures. However, this 

approach is not always valid because they do not take into consideration some aspects 

such as the reinforcement-matrix interface and the difference between the Poisson’s ratio 

of the reinforcement and of the matrix. 
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• Example of application: 

Considering a composite that is 40% formed by continuous unidirectional S-glass 

fibers in an epoxy resin matrix, it is possible to predict its longitudinal and transverse 

Young’s moduli. From the values listed in Tables 4 and 5, it is possible to consider: 

➢ 𝐸𝑓 = 86 𝐺𝑃𝑎 

➢ 𝐸𝑚 = 4 𝐺𝑃𝑎 

 

Longitudinal Young’s modulus (Equation 10): 

𝐸𝑐𝑙 = 𝐸𝑓 𝛷𝑓 + 𝐸𝑚 𝛷𝑚 = 𝐸𝑓 𝛷𝑓 + 𝐸𝑚 (1 − 𝛷𝑓) 

𝐸𝑐𝑙 = 86 ∗ 0.4 + 4 ∗ (1 − 0.4) = 86 ∗ 0.4 + 4 ∗ 0.6  

𝐸𝑐𝑙 = 36.8 𝐺𝑃𝑎 

 

Transverse Young’s modulus (Equation 11): 

1

𝐸𝑐𝑡
=

𝛷𝑓

𝐸𝑓
+

𝛷𝑚

𝐸𝑚
=

𝛷𝑓

𝐸𝑓
+

(1 − 𝛷𝑓)

𝐸𝑚
 

1

𝐸𝑐𝑡
=

0.4

86
+

0.6

4
= 0.1546 

𝐸𝑐𝑡 = 6.5 𝐺𝑃𝑎 

 

Thus, the Young’s modulus is approximately 36.8 GPa when the load is applied in 

the direction of the fibers; whilst it is approximately 6.5 GPa when the load is applied 

transversely to the fibers.  

 

3.2. Halpin-Tsai equation 

The Halpin-Tsai equation is a generalized form to predict the elastic properties of a 

composite based on the properties of matrix and fibers that are part of its composition. 

This equation was empirically developed and it provides satisfactory results for the 

composites formed by continuous and discontinuous fibers [2]. The equation has the 

following form: 

𝑝

𝑝𝑚
=

1+𝜉𝜂𝛷𝑓

1−𝜂𝛷𝑓
,    𝑖𝑛 𝑤ℎ𝑖𝑐ℎ,    𝜂 =

𝑝𝑓 𝑝𝑚⁄ −1

𝑝𝑓 𝑝𝑚⁄ +𝜉
                          (12) 
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where 𝑝 is the composite property (for instance, E1, E2, G12 or G23); 𝑝𝑚 and 𝑝𝑓 are the 

matrix and fiber’s properties, respectively; and 𝜉 is a reinforcement parameter that will 

depend on the loading conditions, geometry and arrangement of the fibers [2]. 

• Example of application: 

Considering a composite that is 40% formed by discontinuous unidirectional S-

glass fibers (aspect ratio l/d = 30) in an epoxy resin matrix, it is possible to predict the 

Young’ modulus of the formed material. In accordance to the values listed in Tables 4 

and 5: 

➢ 𝐸𝑓 = 86 𝐺𝑃𝑎 

➢ 𝐸𝑚 = 4 𝐺𝑃𝑎 

 

Young’s modulus (Equation 12): 

𝑝

𝑝𝑚
=

1+𝜉𝜂𝛷𝑓

1−𝜂𝛷𝑓
 ,    in which     𝜂 =

𝑝𝑓 𝑝𝑚⁄ −1

𝑝𝑓 𝑝𝑚⁄ +𝜉
    and    𝜉 = 2 (

𝑙

𝑑
) 

the last consideration is related to composites formed by discontinuous fibers when 

the property being evaluated is the Young’s modulus in the direction of fibers. Thus,  

𝜉 = 2 (
𝑙

𝑑
) = 2 ∗ 30 = 60       and        𝜂 =

𝐸𝑓 𝐸𝑚⁄ −1

𝐸𝑓 𝐸𝑚⁄ +𝜉
=

86 4⁄ −1

86 4⁄ +60
= 0.2515 

𝐸

𝐸𝑚
=

1 + 𝜉𝜂𝛷𝑓

1 − 𝜂𝛷𝑓
=

1 + 60 ∗ 0.2515 ∗ 0.4

1 − 0.2515 ∗ 0.4
= 7.82 𝐺𝑃𝑎 

𝐸 = 𝐸𝑚 ∗  7.82 = 4 ∗ 7.82 = 31.28 𝐺𝑃𝑎 

Therefore, according to the Halpin-Tsai equation, the longitudinal Young’s 

modulus of the composite will be approximately 31.3 GPa.  
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4. Macromechanical analysis 

The macromechanical analysis consists on the prediction of the behavior of a 

laminate under shear, bending and extensional stresses. Laminates consist of stacking 

several laminas of some composite material in such a way that their resulting properties 

guarantee the desired project requirements (Figure 12). Each lamina may be identified for 

its position within the laminate, its material and its orientation angles in relation to the 

reference axis [2].  

  

Figure 12 – Laminated composite scheme [10]. 

Considering that the thickness of the laminate is small in comparison to other 

dimensions and that there is no out-of-plane stress applied, it is possible to consider 𝜎z =

0, 𝜏𝑧𝑥 = 0 and 𝜏𝑧𝑦 = 0. These propositions reduce the tridimensional correlations for a 

bi-dimensional case [10]. 

To determine the stress-strain correlation of laminated composites under stress, it 

is normally considered that: each lamina is orthotropic and homogeneous; there is no 

shear in the z direction; each lamina remains under elastic regime; and there is no sliding 

between the layers. The origin of the coordinate system imposed will be half of the 

thickness and the value of z will be zero at this position (Figure 13). 

 

 

Figure 13 – Laminated composite formed by four laminas of same thickness [10]. 

It is considered that u0, v0 and w0 are displacement of the reference plane from the 

original Cartersian system in the x, y and z directions, respectively. Thus, u, v and w are 

the displacement from any point of x, y and z directions, respectively.  
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According to Figure 14, it is possible to visualize that: 

𝑢 =  𝑢0 − 𝑧𝛼,    𝑖𝑛 𝑤ℎ𝑖𝑐ℎ    𝛼 =
𝜕𝑤0

𝜕𝑥
                                   (13) 

Likewise: 

 𝑣 =  𝑣0 − 𝑧
𝜕𝑤0

𝜕𝑦
                                                      (14) 

 

Figure 14 – Relationship between strains within a laminated composite [10]. 

The definition of strains leads to: 

𝜀𝑥 =
𝜕𝑢

𝜕𝑥
=

𝜕𝑢0

𝜕𝑥
− 𝑧

𝜕2𝑤0

𝜕𝑥2     𝑎𝑛𝑑    𝜀𝑦 =
𝜕𝑣

𝜕𝑦
=

𝜕𝑣0

𝜕𝑦
− 𝑧

𝜕2𝑤0

𝜕𝑦2                     (15) 

𝛾𝑥𝑦  =  
𝜕𝑢

𝜕𝑦
+

𝜕𝑣

𝜕𝑥
 =  

𝜕𝑢0

𝜕𝑦
+

𝜕𝑣0

𝜕𝑥
− 2𝑧

𝜕2𝑤0

𝜕𝑥𝜕𝑦
                                  (16) 

Coming up to: 

[

𝜀𝑥

𝜀𝑦

𝛾𝑥𝑦

] = [

𝜀𝑥
0

𝜀𝑦
0

𝛾𝑥𝑦
0

] + 𝑧 [

𝜅𝑥

𝜅𝑦

𝜅𝑥𝑦

]                                           (17) 

where 𝜅𝑥, 𝜅𝑦 and 𝜅𝑥𝑦 are the midplane curvatures.  

The stress matrix and the strain matrix may be correlated by the following 

expression: 

[

𝜎𝑥

𝜎𝑦

𝜏𝑥𝑦

] = [

𝑄̅11 𝑄̅12 𝑄̅16

𝑄̅12 𝑄̅22 𝑄̅26

𝑄̅16 𝑄̅26 𝑄̅66

] [

𝜀𝑥

𝜀𝑦

𝛾𝑥𝑦

]                                   (18) 

It must be highlighted that the reduced stiffness matrix described in Equation 18 is 

not formed by the same components of the stiffness matrix for the tridimensional case 

(Equation 4) [10]. 
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Incorporating Equation 17 on the Equation 18 leads to: 

[

𝜎𝑥

𝜎𝑦

𝜏𝑥𝑦

] = [

𝑄̅11 𝑄̅12 𝑄̅16

𝑄̅12 𝑄̅22 𝑄̅26

𝑄̅16 𝑄̅26 𝑄̅66

] [

𝜀𝑥
0

𝜀𝑦
0

𝛾𝑥𝑦
0

] + 𝑧 [

𝑄̅11 𝑄̅12 𝑄̅16

𝑄̅12 𝑄̅22 𝑄̅26

𝑄̅16 𝑄̅26 𝑄̅66

] [

𝜅𝑥

𝜅𝑦

𝜅𝑥𝑦

]         (19) 

To be able to evaluate the stress and strain state of each lamina, the stress and the 

bending moment may be integrated along the thickness of the laminated composite, 

providing the resulting forces and moments (see Figure 15). 

 

Figure 15 – Laminated composites formed by n laminas [10]. 

The resulting force per unit of length in the x-y plane is obtained by the integration 

of the global stress from all laminas along the thickness: 

[

𝑁𝑥

𝑁𝑦

𝑁𝑥𝑦

] = ∫ [

𝜎𝑥

𝜎𝑦

𝜏𝑥𝑦

]

𝑘

𝑑𝑧

ℎ
2⁄

−ℎ
2⁄

                                          (20) 

In the same way, integrating the stresses in each lamina gives the resulting moments 

per unit of length in the x-y plane through the laminate thickness: 

[

𝑀𝑥

𝑀𝑦

𝑀𝑥𝑦

] = ∫ [

𝜎𝑥

𝜎𝑦

𝜏𝑥𝑦

]

𝑘

𝑧𝑑𝑧

ℎ
2⁄

−ℎ
2⁄

                                          (21) 

Replacing Equation 19 on Equations 20 and 21, and considering that the reduced 

stiffness matrix is constant for each lamina, the resulting force and moments are expressed 

by: 
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[

𝑁𝑥

𝑁𝑦

𝑁𝑥𝑦

] = {∑ [

𝑄̅11 𝑄̅12 𝑄̅16

𝑄̅12 𝑄̅22 𝑄̅26

𝑄̅16 𝑄̅26 𝑄̅66

]

𝑘

∫ 𝑑𝑧

ℎ𝑘

ℎ𝑘−1

𝑛

𝑘=1

} [

𝜀𝑥
0

𝜀𝑦
0

𝛾𝑥𝑦
0

]

+ {∑[

Q̅11 Q̅12 Q̅16

Q̅12 Q̅22 Q̅26

Q̅16 Q̅26 Q̅66

]

k

∫ zdz

hk

hk−1

n

k=1

} [

κx

κy

κxy

]               (22) 

[

Mx

My

Mxy

] = {∑ [

Q̅11 Q̅12 Q̅16

Q̅12 Q̅22 Q̅26

Q̅16 Q̅26 Q̅66

]

k

∫ zdz

hk

hk−1

n

k=1

} [

εx
0

εy
0

γxy
0

]

+ {∑[

Q̅11 Q̅12 Q̅16

Q̅12 Q̅22 Q̅26

Q̅16 Q̅26 Q̅66

]

k

∫ z2dz

hk

hk−1

n

k=1

} [

κx

κy

κxy

]               (23) 

Knowing that: 

∫ 𝑑𝑧

ℎ𝑘

ℎ𝑘−1

= (ℎ𝑘 − ℎ𝑘−1),   ∫ 𝑧𝑑𝑧

ℎ𝑘

ℎ𝑘−1

=
1

2
(ℎ𝑘

2 − ℎ𝑘−1
2),    ∫ 𝑧2𝑑𝑧

ℎ𝑘

ℎ𝑘−1

=
1

3
(ℎ𝑘

3 − ℎ𝑘−1
3) 

The following matrix may be defined: 

[

𝑁𝑥

𝑁𝑦

𝑁𝑥𝑦

] = [

𝐴11 𝐴12 𝐴16

𝐴12 𝐴22 𝐴26

𝐴16 𝐴26 𝐴66

] [

𝜀𝑥
0

𝜀𝑦
0

𝛾𝑥𝑦
0

] + [
𝐵11 𝐵12 𝐵16

𝐵12 𝐵22 𝐵26

𝐵16 𝐵26 𝐵66

] [

𝜅𝑥

𝜅𝑦

𝜅𝑥𝑦

]               (24) 

[

𝑀𝑥

𝑀𝑦

𝑀𝑥𝑦

] = [
𝐵11 𝐵12 𝐵16

𝐵12 𝐵22 𝐵26

𝐵16 𝐵26 𝐵66

] [

𝜀𝑥
0

𝜀𝑦
0

𝛾𝑥𝑦
0

] + [
𝐷11 𝐷12 𝐷16

𝐷12 𝐷22 𝐷26

𝐷16 𝐷26 𝐷66

] [

𝜅𝑥

𝜅𝑦

𝜅𝑥𝑦

]               (25) 

In which: 

𝐴𝑖𝑗 = ∑[𝑄̅𝑖𝑗]𝑘
(ℎ𝑘 − ℎ𝑘−1)

𝑛

𝑘=1

                    𝑖, 𝑗 = 1,2,6 (26) 

𝐵𝑖𝑗 = 
1

2
∑[𝑄̅𝑖𝑗]𝑘(ℎ𝑘

2 − ℎ𝑘−1
2)

𝑛

𝑘=1

               𝑖, 𝑗 = 1,2,6 (27) 

𝐷𝑖𝑗 = 
1

3
∑[𝑄̅𝑖𝑗]𝑘(ℎ𝑘

3 − ℎ𝑘−1
3)

𝑛

𝑘=1

               𝑖, 𝑗 = 1,2,6 
(28) 
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Based on all that has been previously exposed, it is possible to define the stress-

strain relationship as: 

[𝜀
0

𝜅
] = [

𝐴∗

𝐵∗ |
𝐵∗

𝐷∗] [
𝑁

𝑀
]          →           [

𝐴∗

𝐵∗ |
𝐵∗

𝐷∗] = [
𝐴

𝐵
|
𝐵

𝐷
]
−1

                 (29) 

Next, it is presented the equations that correlates the elastic moduli of the laminate 

with the thickness of the laminas and its properties. It is described the Young’s moduli 

obtained through longitudinal and flexural vibration tests. [10]. 

 

• Young’s modulus obtained through longitudinal test: 

By considering the application of a load in the x direction (𝑁𝑥 ≠ 0,𝑁𝑦 =

0 𝑎𝑛𝑑 𝑁𝑥𝑦 = 0), it is possible to obtain the strain value in x through the following 

relation: 

𝜀𝑥
0 = 𝐴11

∗ . 𝑁𝑥                                                       (30) 

Remember that 𝑁𝑥 = ∫ 𝜎𝑥𝑑𝑧
ℎ

2⁄

−ℎ
2⁄

= 𝜎𝑥. ℎ, then: 

𝜀𝑥
0 = 𝐴11

∗ . 𝜎𝑥 . ℎ    →     𝐸𝑥
𝑙𝑜𝑛𝑔

=
𝜎𝑥

𝜀𝑥
0 =

1

𝐴11
∗ .ℎ

                               (31) 

Similarly, it is possible to come to: 

𝐸𝑦
𝑙𝑜𝑛𝑔

=
1

𝐴22
∗ .ℎ

,     𝐺𝑥𝑦
𝑙𝑜𝑛𝑔

=
1

𝐴66
∗ .ℎ

,     𝜈𝑥𝑦
𝑙𝑜𝑛𝑔

= −
𝐴12

∗

𝐴11
∗ ,     𝜈𝑦𝑥

𝑙𝑜𝑛𝑔
= −

𝐴12
∗

𝐴22
∗                 (32) 

• Young’s modulus obtained through flexural test: 

Considering the application of a bending moment in x direction (𝑀𝑥 ≠ 0,𝑀𝑦 =

0 𝑎𝑛𝑑 𝑀𝑥𝑦 = 0), it is possible to obtain the strain value by the following relation: 

𝜅𝑥 = 𝐷11
∗ . 𝑀𝑥        →         𝐷11

∗ =
𝜅𝑥

𝑀𝑥
                                   (33) 

Knowing that stress in the x direction is given by: 

𝜎𝑥𝑥 =
𝑀.𝑧

𝐼
= 𝐸𝑥

𝑓𝑙𝑒𝑥
.
𝑧

𝜌
     →      𝐸𝑥

𝑓𝑙𝑒𝑥
=

𝑀𝑥.𝑏.𝑧

𝜅𝑥.𝐼.𝑧
=

12.𝑀𝑥.𝑏

𝜅𝑥.𝑏.ℎ3 =
12

𝐷11
∗ .ℎ3             (34) 

It is also possible to come to: 

𝐸𝑦
𝑓𝑙𝑒𝑥

=
12

𝐷22
∗ .ℎ3 ,     𝐺𝑥𝑦

𝑓𝑙𝑒𝑥
=

12

𝐷66
∗ .ℎ3 ,     𝜈𝑥𝑦

𝑓𝑙𝑒𝑥
= −

𝐷12
∗

𝐷11
∗ ,     𝜈𝑦𝑥

𝑓𝑙𝑒𝑥
= −

𝐷12
∗

𝐷22
∗          (35) 
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• Case study – Prediction and characterization of Young’s moduli of wood laminates 

Based on the described model involving macromechanic among other 

considerations, it is possible to predict the Young’s modulus of a laminate material from 

the properties of its laminas. In this study, the Sonelastic equipment was used for the 

characterization of laminas and laminates produced in order to compare the theoretical 

value of the Young’s modulus to the experimental value obtained through the flexural 

and longitudinal vibration tests.  

Two laminates were manufactured from wood layers divided into two groups: 

specimens with high Young’s modulus (oriented parallel to the fibers) and specimens 

with low Young’s modulus (oriented transversally to the fibers). For both laminates, four 

laminas were symmetrically bonded, so that the external laminas of Laminate 1 consisted 

of laminas with greater Young’s modulus and the internal laminas with lower Young’s 

modulus (Figure 16a). The inverse was made to assemble the Laminate 2 (Figure 16b). 

 

 

Figure 16 - (a) Laminate 1 – external layers have greater Young’s modulus and the internal layers have 

lower Young’s modulus. (b) Laminate 2 - external layers have lower Young’s modulus and internal 

laminas have higher Young’s modulus.  

a) 

b) 
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Firstly, the two groups of laminas were characterized using the Sonelastic 

solutions and it was obtained an average value for them (Table 6). The mass and 

dimensions of the specimens were measured which, together with the evaluated 

frequency, made possible the calculation of the Young's modulus of the material. 

The SB-AP support (basic support for small specimens) was employed to guarantee 

better conditions for the characterization of the laminas (Figure 17).  

 

Figure 17 – Configuration of the Sonelastic® solutions used to characterize the lamina in this study, 

highlighting the software and the basic support for small specimens (SB-AP). 

Table 7 presents the thickness of the laminas and their positioning. 

Table 6 – Average values of Young's modulus for the two groups of laminas, obtained through 

Sonelastic®. 

Group 
Young's modulus 

(GPa) 
Uncertainty 

(GPa) 
Uncertainty 
percentage 

Wood sheets with longitudinal fibers 15.28 1.99 13.0% 

Wood sheets with transversal fibers 1.49 0.09 6.0% 

 

Table 7 – Thickness of each lamina used to make the laminates. 

  Thickness 
(mm) 

Laminate 1 

Lamina 1 4.6 

Lamina 2 5.2 

Lamina 3 5.4 

Lamina 4 4.9 

Laminate 2 

Lamina 1 5.1 

Lamina 2 4.8 

Lamina 3 5.1 

Lamina 4 4.0 
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▪ Young's modulus prediction for Laminate 1: 

Young's modulus obtained through longitudinal vibration mode: 

According to Equation 26, neglecting the Poisson’s ratio effect and considering that 

the reduced stiffness matrix has the same elements of the stiffness matrix (the angle of 

the fibers in relation to the specimen’s orientation is 0º), the following equations are 

formed: 

𝐴𝑖𝑗 =  ∑[𝑄̅𝑖𝑗]
𝑘
(ℎ𝑘 − ℎ𝑘−1)

𝑛

𝑘=1

= ∑[𝑄𝑖𝑗]
𝑘
(ℎ𝑘 − ℎ𝑘−1)

𝑛

𝑘=1

  

𝐴11 =  ∑[𝑄11]𝑘(ℎ𝑘 − ℎ𝑘−1)

4

𝑘=1

= ∑[
𝐸1

1 − 𝜈12𝜈21

]
𝑘

(ℎ𝑘 − ℎ𝑘−1)

4

𝑘=1

 

Considering that ν21→0, it is possible to verify that: 

𝐴11 = ∑[𝐸1]𝑘(ℎ𝑘 − ℎ𝑘−1)

4

𝑘=1

 

The A11 parameter calculation is described in Table 8. 

Table 8 - A11 parameter calculation for Laminate 1. 

  hk-1 (m) hk (m) Calculation (A11×103) 
A11 

parameter 

Laminate 1 

Lamina 1 -0.01005 -0.00545 15.28×[-5.45-(-10.05)] 0.0703 

Lamina 2 -0.00545 -0.00025 1.49×[-0.25-(-5.45)] 0.0077 

Lamina 3 -0.00025 0.00515 1.49× [5.15-(-0.25)] 0.0080 

Lamina4 0.00515 0.01005 15.28×[(10.5-5.15)] 0.0749 

    ∑ =  0.1609 

Finally, considering that there is no coupling effect and using Equation 31, leads to: 

𝐸𝑥
𝑙𝑜𝑛𝑔

=
1

𝐴11
∗ . ℎ

 ≈  
𝐴11

ℎ
=

0.1609

20.1 ×  10−3
= 8.00 𝐺𝑃𝑎 

 

Young's modulus obtained through the flexural vibration mode: 

According to Equation 28, neglecting the Poisson’s ratio effect of the laminas and 

considering again that the reduced stiffness matrix has the same elements of the stiffness 

matrix: 
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𝐷𝑖𝑗 =  
1

3
∑[𝑄̅𝑖𝑗]

𝑘
(ℎ𝑘

3 − ℎ𝑘−1
3)

𝑛

𝑘=1

=
1

3
∑ [𝑄𝑖𝑗]𝑘

(ℎ𝑘
3 − ℎ𝑘−1

3
)

𝑛

𝑘=1

 

𝐷11 = 
1

3
∑[𝑄11]𝑘(ℎ𝑘

3 − ℎ𝑘−1
3)

4

𝑘=1

=
1

3
∑[

𝐸1

1 − 𝜈12𝜈21

]
𝑘

(ℎ𝑘
3 − ℎ𝑘−1

3)

4

𝑘=1

 

Considering that ν21→0: 

𝐷11 = 
1

3
∑[𝐸1]𝑘(ℎ𝑘

3 − ℎ𝑘−1
3)

4

𝑘=1

 

D11 parameter calculation is described in Table 9. 

Table 9 - D11 calculation for Laminate 1. 

  hk-1 (m) hk (m) Calculation (D11×109) 
D11 

parameter 

Laminate 1 

Lamina 1 -0.01005 -0.00545 15.28×[(-5.45)³-(-10.05)³]/3 4.346×10-6 

Lamina2 -0.00545 -0.00025 1.49×[(-0.25)³-(-5.45)³]/3 8.039×10-8 

Lamina 3 -0.00025 0.00515 1.49×[(5.15)³-(-0.25)³]/3 6.785×10-8 

Lamina4 0.00515 0.01005 15.28×[(10.5)³-(5.15)³]/3 4.474×10-6 

    ∑ = 8.968×10-6 

Lastly, considering that there is no coupling effect and using Equation 34, leads to: 

𝐸𝑥
𝑓𝑙𝑒𝑥

=
12

𝐷11
∗ . ℎ3

 ≈  
12 𝐷11

ℎ3
=

12 ×  8.968 ×  10−6

(20.1 ×  10−3)3
= 13.25 𝐺𝑃𝑎 

 

▪ Young's modulus prediction for Laminate 2: 

Young's modulus obtained through longitudinal vibration mode: 

According to Equation 26, neglecting the Poisson’s ratio effect and considering that 

the reduced stiffness matrix has the same elements of the stiffness matrix (the angle of 

the fibers in relation to the specimen’s orientation is 0º): 

𝐴11 = ∑[𝐸1]𝑘(ℎ𝑘 − ℎ𝑘−1)

4

𝑘=1

 

The A11 parameter calculation is described in Table 10. 
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Table 10 - A11 parameter calculation for Laminate 2. 

  hk-1 (m) hk (m) Calculation (A11×103) 
A11 

parameter 

Laminate 2 

Lamina 1 -0.0095 -0.0044 1.49×[(-4.4)-(-9.5)] 0.0076 

Lamina 2 -0.0044 0.0004 15.28×[(0.4)-(-4.4)] 0.0733 

Lamina 3 0.0004 0.0055 15.28×[(5.5)-(0.4)] 0.0779 

Lamina 4 0.0055 0.0095 1.49×[(9.5)-(5.5)] 0.0060 

    ∑ = 0.1648 

Lastly, considering that there is no coupling effect and using Equation 31, leads to: 

𝐸𝑥
𝑙𝑜𝑛𝑔

=
1

𝐴11
∗ . ℎ

 ≈  
𝐴11

ℎ
=

0.1648

19 ×  10−3
= 8.67 𝐺𝑃𝑎 

 

Young's modulus obtained through the flexural vibration mode: 

According to Equation 28, considering that the reduced stiffness matrix has the 

same elements as the stiffness matrix and that 𝜈21→0, the following equation is formed: 

𝐷11 = 
1

3
∑[𝐸1]𝑘(ℎ𝑘

3 − ℎ𝑘−1
3)

4

𝑘=1

 

D11 parameter calculation is described in Table 11. 

Table 11 - D11 parameter calculation for Laminate 2. 

  hk-1 (m) hk (m) Calculation (D11×109) 
D11 

parameter 

Laminate  2 

Lamina 1 -0.0095 -0.0044 1.49×[(-4.4)³-(-9.5)³]/3 3.835×10-7 

Lamina 2 -0.0044 0.0004 15.28×[(0.4)³-(-4.4)³]/3 4.342×10-7 

Lamina 3 0.0004 0.0055 15.28×[(5.5)³-(0.4)³]/3 8.471×10-7 

Lamina 4 0.0055 0.0095 1.49×[(9.5)³-(5.5)³]/3 3.432×10-7 

    ∑ = 2.008×10-6 

Finally, considering that there is no coupling effect and using Equation 34, leads to: 

𝐸𝑥
𝑓𝑙𝑒𝑥

=
12

𝐷11
∗ . ℎ3

 ≈  
12 𝐷11

ℎ3
=

12 ×  2.008 𝑥 10−6

(19 ×  10−3)3
= 3.51 𝐺𝑃𝑎 
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From the values obtained through the macromechanical model (described above), 

it was possible to compare them to the experimental values obtained using the Impulse 

Excitation Technique (Sonelastic), such as presented in Table 12. The SA-BC support 

(adjustable support for bars and cylinders) was used in experimental characterization to 

provide the best conditions for the excitation of the desired vibration modes.  

Table 12 - Comparison between the values obtained through the theoretical model and Sonelastic. 

  Young's modulus (GPa) 
Deviation 

(GPa) 

Percent 

Deviation 

(%)   Macromechanical 

model 
Sonelastic®

 

Laminate 1 
𝐸𝑥

𝑙𝑜𝑛𝑔
 8.00 10.29 2.29 22.2% 

𝐸𝑥
𝑓𝑙𝑒𝑥

 13.25 14.38 1.13 7.8% 

Laminate 2 
𝐸𝑥

𝑙𝑜𝑛𝑔
 3.51 3.60 0.09 2.5% 

𝐸𝑥
𝑓𝑙𝑒𝑥

 8.67 9.78 1.11 11.3% 

 

The theoretical values described herein allow a reasonable approximation to the 

experimental values measured through the Impulse Excitation Technique. The deviation 

found is mainly due to the approximations made and the influence of the uncertainties 

related to the Young’s modulus and dimensions that fed the model. Table 8 indicates that 

the initial uncertainty of the Young's modulus was approximately 13% for the laminas 

with longitudinal fibers and approximately 6% for the laminas with transversal fibers.  
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Appendix B - Poisson’s ratio for composites employing IET 

The characterization of the Poisson’s ratio of any material using the Sonelastic® 

equipment must take into consideration the material symmetry and specimen orientation. 

Despite the fact that ASTM E1876 describe the Impulse Excitation Technique only for 

isotropic materials [1], the technique may be extended to other material types. In that 

case, caution must be taken regarding the specimen orientation. 

1. Isotropic material 

Only two independent variables are needed to characterize an isotropic material in 

what regards its elastic properties. For this reason, characterizing only one specimen is 

enough to determine the Poisson’s ratio. In this case, the compliance matrix has the 

following form: 

[𝑆] =

[
 
 
 
 
 
𝑆11 𝑆12 𝑆12 0 0 0
𝑆12 𝑆11 𝑆12 0 0 0
𝑆12 𝑆12 𝑆11 0 0 0
0 0 0 2(𝑆11 − 𝑆12) 0 0
0 0 0 0 2(𝑆11 − 𝑆12) 0
0 0 0 0 0 2(𝑆11 − 𝑆12)]

 
 
 
 
 

        (36) 

By applying the boundary conditions to the model and making some considerations 

[4,19], the stiffness matrix has the following form: 

[𝑆] =

[
 
 
 
 
 
 
 
 
 

1

𝐸
−

𝜈

𝐸
−

𝜈

𝐸
0 0 0

−
𝜈

𝐸

1

𝐸
−

𝜈

𝐸
0 0 0

−
𝜈

𝐸
−

𝜈

𝐸

1

𝐸
0 0 0

0 0 0
1

𝐺
0 0

0 0 0 0
1

𝐺
0

0 0 0 0 0
1

𝐺]
 
 
 
 
 
 
 
 
 

                                     (37) 

 

By comparing the matrices, the following relation is obtained: 

1

𝐺
= 2(𝑆11 − 𝑆12)                                        (38) 

Knowing that 𝑆11 =
1

𝐸
 and 𝑆12 = −

𝜈

𝐸
: 
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1

𝐺
=

2(1+𝜈)

𝐸
    →     𝐺 =

𝐸

2(1+𝜈)
     →      𝜈 =

𝐸

2𝐺
− 1            (39) 

The Poisson’s ratio characterized by the Sonelastic® equipment is the one described 

in this item because it is the simplest form and it only needs one specimen for its 

characterization. In that case, it is necessary to use the torsional vibration mode in order 

to obtain the shear modulus of the material.  

2. Transversely isotropic material 

Five independent constants are necessary to fully characterize the elastic properties 

of a transversely isotropic material. Next, it is presented the compliance matrix to this 

type of material: 

[𝑆] =

[
 
 
 
 
 
𝑆11 𝑆12 𝑆12 0 0 0
𝑆12 𝑆22 𝑆23 0 0 0
𝑆12 𝑆23 𝑆22 0 0 0
0 0 0 2(𝑆22 − 𝑆23) 0 0
0 0 0 0 𝑆55 0
0 0 0 0 0 𝑆55]

 
 
 
 
 

                     (40) 

By applying the boundary conditions to the model and making some considerations 

[4,19], the stiffness matrix has the following form: 

[𝑆] =

[
 
 
 
 
 
 
 
 
 

1

𝐸1
−

𝜈12

𝐸1
−

𝜈12

𝐸1
0 0 0

−
𝜈12

𝐸1

1

𝐸2
−

𝜈23

𝐸2
0 0 0

−
𝜈12

𝐸1
−

𝜈23

𝐸2

1

𝐸2
0 0 0

0 0 0
1

𝐺23
0 0

0 0 0 0
1

𝐺13
0

0 0 0 0 0
1

𝐺12]
 
 
 
 
 
 
 
 
 

                        (41) 

 

By comparing these matrices, the following relation is obtained: 

1

𝐺23
= 2(𝑆22 − 𝑆23)                                            (42) 

Knowing that: 𝑆22 =
1

𝐸2
 and 𝑆23 = −

𝜈23

𝐸2
: 
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1

𝐺23
= 2(

1

𝐸2
+

𝜈23

𝐸2
)    →    𝐺23 =

𝐸2

2(1+𝜈23)
   →    𝜈23 =

𝐸2 

2𝐺23
− 1    (43) 

Observing Equation 43, it is noticeable that it is not possible to obtain the Poisson’s 

ratio (𝜈23) only through the Impulse Excitation Technique. This can be explained because 

it is only possible to obtain the Young's moduli (𝐸1 and 𝐸2) and the shear modulus 𝐺12 

(= 𝐺13) for specimens presenting this symmetry. 

3. Orthotropic material 

Nine constants are needed to fully characterize orthotropic materials in what regards 

its elastic properties. Next, it is presented the compliance matrix for this type of material: 

[𝑆] =

[
 
 
 
 
 
𝑆11 𝑆12 𝑆13 0 0 0
𝑆12 𝑆22 𝑆23 0 0 0
𝑆13 𝑆23 𝑆33 0 0 0
0 0 0 𝑆44 0 0
0 0 0 0 𝑆55 0
0 0 0 0 0 𝑆66]

 
 
 
 
 

                            (44) 

By applying the boundary conditions to the model and making some considerations 

[4,19], the stiffness matrix has the following form: 

[𝑆] =

[
 
 
 
 
 
 
 
 
 

1

𝐸1
−

𝜈21

𝐸2
−

𝜈31

𝐸3
0 0 0

−
𝜈12

𝐸1

1

𝐸2
−

𝜈32

𝐸3
0 0 0

−
𝜈13

𝐸1
−

𝜈23

𝐸2

1

𝐸3
0 0 0

0 0 0
1

𝐺23
0 0

0 0 0 0
1

𝐺13
0

0 0 0 0 0
1

𝐺12]
 
 
 
 
 
 
 
 
 

                         (45) 

Considering the symmetry of the matrix (Eq. 45), the following relation is obtained: 

𝜈12

𝐸1
=

𝜈21

𝐸2
 ,     

𝜈13

𝐸1
=

𝜈31

𝐸3
 ,     

𝜈23

𝐸2
=

𝜈32

𝐸3
                                 (46) 

In that case, by characterizing three specimens, one for each of the main directions, 

it is possible to obtain the three Young's moduli (𝐸1, 𝐸2 𝑎𝑛𝑑 𝐸3). Considering this, it is 

possible to correlate the ratio of these measurements with the material Poisson's ratio, 

even if it is not possible to directly obtain these properties.  
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Appendix C – Frequently asked questions (FAQ) 

- How should the orientation of fibers be considered when characterizing and reporting 

results 

The characterization should be performed and the results reported considering the main 

direction of the fibers in accordance to the specimen. Check if the specimen is oriented 

in 1, 2 or 3 direction, or in a combination of directions (see chapter 3, item 3.3). 

 

- Which Poisson’s ratio value should be used to calculate the Young’s modulus? 

Considering that the composites are generally orthotropic materials, it is not possible to 

obtain results for the Poisson’s ratio using this technique (Appendix B). Therefore, it is 

necessary to estimate a value for this property. The suggestion involves using a Poisson’s 

ratio of 0.25 ± 0.15 to be able to cover all possible measurements. It is worthy to 

emphasize that, in general, the sensitivity of Young’s modulus measurements in relation 

to the estimated Poisson’s ratio is low. 

 

- How should the specimen be supported and excited 

The boundary conditions are determined according to the vibration mode required to 

measure the elastic moduli. If the goal is to obtain values for Young’s modulus, the 

boundary conditions should prioritize flexural or longitudinal vibration modes. However, 

if the goal is to obtain values for shear modulus, boundary conditions should prioritize 

the torsional vibration mode (see chapter 3, item 3.2). 

 

- How is it possible to calculate the shear modulus using effective values 

The correlation involving these properties is not trivial and it will depend on several 

factors. For example, a parallel combination of these properties was described for 

cylindrical wooden specimens at [14]. 

 

http://www.atcp.com.br/pt/produtos/caracterizacao-materiais/sonelastic/aplicacoes-sonelastic/compositos-madeiras.html
http://www.sonelastic.com/

